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Introduction

Today we start our study of decoupling techniques. We begin by
considering complete decoupling.
Let {di}n

i=1 be a sequence of possibly dependent random variables with
E|di |< ∞. A basic question is: how large can the expectation of a sum of
dependent variables be? If we know the expectations of the individual
component, linearity of expectations gives the answer.

E
n∑

i=1
di =

n∑
i=1

Edi , (1)

A natural question arises. How large can

EΦ(
n∑

i=1
di),

be for some nonlinear function Φ?
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Complete Decoupling Equality

In complete decoupling, one compares Ef (
∑

di) to Ef (
∑

yi) for more
general functions f (·), where {yi}n

i=1 is a sequence of independent
variables where for each i , di and yi have the same marginal distributions
(denoted as di

L= yi or di
d= yi). We can then rewrite the ”complete

decoupling” equality (1) as

E
n∑

i=1
di = E

n∑
i=1

yi .

And it remains possible to derive valuable inequalities based on specific
assumptions.
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Example: Construction of Independent Sequence

Given the dependent di ’s, how can we obtain the independent yi ’s? One
way of constructing the yi ’s is by producing n independent copies of d1,

d2, ..., dn , in the following manner, where d (l)
i denotes the l-th copy of di :

Let yi be d (i)
i and we obtain a sequence of independent copies of {di}n

i=1.
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Simplest Scenario

For {yi} a sequence of independent random variables with the identical
distribution characterized by the cumulative distribution function (CDF)
F , we are interested in how large can E|

n∑
i=1

yi |p be. And let us recall
KHINTCHINE’s inequality for one of the simplest situations, where Yi = ±1
with probability 1/2.
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Theorem (KHINTCHINE inequality)
Let ϵi , i = 1, ..., m be i.i.d. Rademacher variables with P(ϵi = ±1) = 1/2.
Let 0 < p < ∞ and let x1, ..., xn ∈ R. Then

Ap

( n∑
i=1

|xi |2
)1/2

≤
(
E|

n∑
i=1

ϵixi |p
)1/p

≤ Bp

( n∑
i=1

|xi |2
)1/2

(2)

for some constants Ap, Bp > 0 depending only on p.
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In this case, we note that with xi = 1 for all i (and hence yi = ϵi),

E|
n∑

i=1
yi |p≈ n

p
2 . (3)

Particularly, if we let p = 1, then we have that E|
n∑

i=1
yi |≈

√
n. However,

for a general distribution F , we need to calculate the following integral

E|
n∑

i=1
yi |p=

∫
Rn

|
n∑

i=1
yi |pdF (y1)...dF (yn), (4)

which is hard to compute. One tool to approximate the expectation is the
K-function, introduced in the last lecture.
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Definition (K-function, Klass [3])
Consider a nontrivial random variable Y . Then the K-function, KY (x), is
implicitly defined by the inverse of

g(x) = x2

x∫
0
E|Y |I|Y |>udu

. (5)

And you may already verified the equivalent definition of K-function,
which is the unique solution of

KY (x)2 = xE[Y 2∧(|Y |KY (x))] = xEY 2I|Y |≤KY (x)+xKY (x)E|Y |I|Y |>KY (x).
(6)

KY (x) exists and is unique since the function E[Y 2/t2 ∧ |Y |/t)] is strictly
decreasing and continuous, with values ranging from 0 to ∞.
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Now we consider Yn = (y1, ..., yn), where the variables are independent,
and analogously let K (Yn) be the unique positive number k solving

n∑
i=1

Ey2
i I|yi |≤k + k

n∑
i=1

E|yi |I|yi |>k =
n∑

i=1
E(y2

i ∧ k|yi |) = k2, (7)

or equivalently the unique k such that
n∑

i=1
E(y2

i
k2 ∧ |yi |

k ) = 1.

We remark that when yi are i.i.d., this reduces to

nE(y2
1 ∧ |y1|Ky1(n)) = K 2

y1(n).
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K-Function Bound

And we have the following bounds established by K-functions.

Theorem
Consider {yi}n

i=1 a sequence of i.i.d. random centered variables such that
y1 ∼ Y . Then we have

0.67KY (n) ≤ E|
n∑

i=1
yi |≤ 2KY (n). (8)
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Here, I only provide the upper bound when the variables are symmetric.
Denote Y ′ = YI|Y |≤k and Y ” = YI|Y |>k , then from (7) we have that
En(Y ′)2 ≤ KY (n)2 and En|y”|≤ KY (n).
Thus by triangle inequality, JENSEN inequality, and that yi ’s are
independent symmetric around 0, we have

E|
n∑

i=1
yi | ≤ E|

n∑
i=1

y ′
i +

n∑
i=1

yi”|

≤
(
E|

n∑
i=1

y ′
i |2
)1/2

+
n∑

i=1
E|y ′′

i |

=
(
nE(Y ′)2

)1/2
+ nE|Y ”|

≤ 2KY (n).
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Besides L1 norm, the bound can be extended to EΦ(
∑

yi) for Φ convex
with a generalized K-function associated to Φ. The details can be found in
[3] by Klass or sections 2 and 3 in [2].
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Consider now {di} the sequence of martingale difference, i.e., Mn :=
n∑

i=1
di

is a martingale. How large are E|
n∑

i=1
di |p and Emax

j≤n
|

j∑
i=1

di |p?
Recall BURKHOLDER-DAVIS-GUNDY’s Inequality, we know that

Emax
j≤n

|
j∑

i=1
di |p= Emax

j≤n
|Mj |p≈ E

( n∑
i=1

d2
i

)p/2

.

Theorem (BURKHOLDER-DAVIS-GUNDY’s Inequality)
If d1, d2, . . . , dn are martingale differences, then for any p ≥ 1,

cpE

( n∑
i=1

d2
i

) p
2
 ≤ E

( max
1≤k≤n

∣∣∣∣∣
k∑

i=1
di

∣∣∣∣∣
)p ≤ CpE

( n∑
i=1

d2
i

) p
2
 , (9)
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Decoupling Inequality for Martingales

BUT the answer is not clear unless this martingale has independent
increments. And here we still analyze the L1 scenario for simplicity.

Theorem

Consider now {di} the sequence of mean-zero martingale differences, and
yi ’s are independent copies of di ’s. Then

Emax
j≤n

|
j∑

i=1
di |≤ cE|

n∑
i=1

yi | (10)

Remark
Please do not forget we can extend our results from |·| to Φ(·), with
generalized K-functions.
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We first denote Dn = (d1, ..., dn) and Yn = (y1, ..., yn). Then

n∑
i=1

E(d2
i

k2 ∧ |di |
k ) = 1 =

n∑
i=1

E(y2
i

k2 ∧ |yi |
k , )

and by definition we have that K (Dn) = K (Yn).
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Then according to BURKHOLDER-DAVIS-GUNDY’s Inequality,

Emax
j≤n

|
j∑

i=1
di |≤ cE

( n∑
i=1

d2
i

)1/2

= cE
( n∑

i=1
((d ′

i )2 + (d”)2)
)1/2

[by definitions of d ′
i and di”]

≤ c
(
E(

n∑
i=1

(d ′
i )2)1/2 +

n∑
i=1

E|di”|
)

[by concavity of
√

·]

≤ c
(

(E
n∑

i=1
(d ′

i )2)1/2 + K (Dn)
)

[by JENSEN and the definition of K function]

≤ c
(
(K (Dn)2)1/2 + K (Dn)

)
= 2cK (Dn) = 2cK (Yn) ≤ cE|

n∑
i=1

yi |.
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Decoupling Inequality for Nonnegative RV

The decoupling inequality for martingale in the last section then serve as
an important lemma to establish the complete decoupling inequality for
the sums of nonnegative random variables. That is, we want to study
EΦ(

∑
di) where di are nonnegative.
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Decoupling Inequality for Nonnegative RV (Special Case)

First we take Φ(·) =
√

· as a special case.

Theorem
Let d1, ..., dn be nonnegative arbitrary dependent random variables and yi ’s
the independent copies of di ’s. Then there exists a constant C such that

E

√√√√ n∑
i=1

di ≤ CE

√√√√ n∑
i=1

yi . (11)
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Proof:

Recall the decoupling inequality for MGD:

Emax
j≤n

|
j∑

i=1
di |≤ cE|

n∑
i=1

yi | (12)

Let ϵ1, ..., ϵn be i.i.d. Rademacher variables, independent of {di} and {yi}.

Then Mj :=
j∑

i=1

√
diϵi is martingale.
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Since
√

diϵi and √yiϵi are the martingale differences, by the previous
decoupling inequality for martingales (5), we have

E

√√√√ n∑
i=1

di = E

√√√√ n∑
i=1

√
di

2
ϵ2
i

≤ C1Emax
j≤n

|
j∑

i=1

√
diϵi | [by B-D-G inequality]

≤ C2E|
n∑

i=1

√yiϵi |

≤ C3E

√√√√ n∑
i=1

yi [by B-D-G inequality again]
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A Lower Bound for Φ(·) = (·)p

Generally, according to [2], for nonnegative dependent r.v.s (d1, ..., dn),
each yi is an i.i.d. copy of di , and {yi} themselves are independent as well.
When p ≥ 2, there exists a constant Cp depending on p only s.t.

E|
n∑

i=1
di |p≥ CpE|

n∑
i=1

yi |p. (13)
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More General Φ

Theorem (Upper Bound, Proposition 1 in [2])
Suppose Φ is a concave nondecreasing function on [0, ∞) such that
Φ(0) = 0 and Φ(x) > 0 if x > 0, then ∃ C > 0, not depending on
anything, such that

EΦ
(∑

di
)

≤ CEΦ
(∑

yi
)

. (14)

Theorem (Lower Bound, Proposition 2 in [2])
Suppose Φ is convex and increasing on [0, ∞). Furthermore, ∃α > 0 s.t.
∀x > 0, c ≥ 2, Φ(cx) ≤ cαΦ(x). Then ∃Cα depending only on α s.t.

EΦ(
∑

di) ≥ CαEΦ(
∑

yi)
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More Recent Results

1 Chollette et al [1] showed that the constant C in the upper bound
satisfy C ≤ e

e−1 ≈ 1.5820.
2 Makaryachev et al [4] showed a sharp decoupling inequality for convex

Φ using an independent Poisson(1) variable P:

EΦ(P ·
∑

di) ≥ EΦ(
∑

yi).

Consequently, for p ≥ 1

E(
∑

di)p ≥ A−1
p E(

∑
yi)p

where Ap := EPp is the fractional Bell number
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